Разрешите сайту отправлять вам актуальную информацию.

08:12
Москва
25 ноября ‘24, Понедельник

Вирус можно сделать одновременно живым и мертвым

Опубликовано
Текст:
Понравилось?
Поделитесь с друзьями!

Вместо шредингеровского кота, которого никак не удается сделать одновременно живым и мертвым, физики провернули тот же трюк с вирусами. И теперь спокойно уже замахиваются на небольших животных.

Уже давно никого не удивляет, что электроны могут одновременно находиться в двух разных местах, атомы имеют сразу несколько значений энергии, а микроскопические волчки крутятся сразу в двух направлениях -- например, по часовой стрелке и против нее одновременно. Худо-бедно большинство людей, интересующихся наукой, привыкли и к мысли, что даже привычный электрический ток может течь по цепи одновременно в обе стороны, хотя реально это явление можно увидеть лишь в сверхпроводниках.

Все это очевидное-невероятное возможно благодаря принципу суперпозиции, согласно которому, если квантовый объект может быть либо таким, либо эдаким, то он может оказаться и произвольной смесью такового и эдакого. Принцип работает, хотя с точки зрения здравого смысла идти одновременно влево и вправо нельзя, а находиться одновременно в Москве и Магадане не удавалось ни Эмилю Кио, ни Гудини с Копперфильдом. Создать какой-то осмысленный аналог квантовой механики без принципа суперпозиции, по-видимому, нельзя, и физикам, похоже, придется и дальше мириться с этой шизофренией.

Коты, носы и мозги

Чтобы раз и навсегда доказать, что в микро- и макромире действуют разные законы, один из основателей квантовой механики Эрвин Шредингер в начале 1930-х годов, когда только-только осознал всю суть явления квантовой запутанности, придумал своего знаменитого кота. Это мысленный эксперимент, в котором животное было одновременно и живым и мертвым.

Шредингер предложил взять большой ящик, изолированный от внешнего мира, и засунуть туда кота. В ящик положить ампулу с синильной кислотой, молоточек, который срабатывает от счетчика Гейгера, и кроху радиоактивного вещества. Когда нестабильный атом распадется, альфа-частица пролетит через счетчик Гейгера, молоточек разобьет ампулу, а кот сдохнет. Пока атом не распался -- кот живой. Беда в том, что, если верить квантовой механике, состояние атома (до момента измерения, см. ниже) представляет собой смесь распавшегося и нераспавшегося состояний: смесь, в которой доля распавшегося состояния все время увеличивается, а нераспавшегося -- падает. Но ведь жизнь кота жестко связана с атомом. Он что тогда, тоже одновременно живой и мертвый?

Если верить стандартной, копенгагенской интерпретации квантовой механики, то ответ положительный. Открыв ящик, мы всегда найдем кота либо живым, либо дохлым -- но это связано уже непосредственно с нашим измерением. Пока ящик закрыт, имеет место суперпозиция состояний. Когда открыли -- происходит, как говорят физики, «коллапс» волновой функции к одному из двух состояний, которые различает наш измерительный аппарат (глаза, уши, нос и так далее, плюс извилины).

Будь мы устроены по-другому, мы могли бы найти кота в более примечательных состояниях -- например «жив плюс мертв» или «мертв минус жив». Почему мы устроены именно так, что отличаем именно классические живое и мертвое, и могли бы мы быть устроены по-другому -- отдельный вопрос, ответы на который один любопытнее другого. Как конкретно происходит коллапс -- другой предмет ожесточенных диспутов. Однако в реальности существования суперпозиции сомневаться не стоит.

Квантовый карантин

Сам Шредингер, который никогда в жизни полуживых котов не видел, считал, что его умозрительная конструкция доказывает реальность физической границы между квантовым и классическим мирами. Один из отцов квантовой механики был совершенно уверен, что в природе должен существовать закон, который запрещает квантовым явлениям проявляться в классическом мире.

Сейчас подобную точку зрения разделяет меньшинство физиков. Однако никто из большинства пока не продемонстрировал эксперимента с полуживым котом. И дело не в сострадании к животным: просто кот с точки зрения физики -- безумно сложная система, изолировать которую от внешних воздействий невозможно. А эти воздействия заставляют волновую функцию сколлапсировать в одно из классических состояний гораздо быстрее, чем мы наберемся смелости, предусмотрительно зажмем носы и вскроем ящик.

Пока абсолютное большинство экспериментов, изучающих суперпозицию состояний, касается сугубо квантовых объектов, и большинство из них – только сугубо квантовых свойств этих объектов, у которых нет классических аналогов. Лишь совсем недавно впервые удалось продемонстрировать квантовое запутывание состояний механического движения двух ионов. Оно не могло бы иметь места, не будь каждая из частиц в состоянии одновременно и покоя и движения -- притом в четких, заранее заданных пропорциях.

Вирус в ловушке

Теперь ситуация может измениться. Группа немецких и испанских физиков под руководством Ориоля Ромеро-Исарта из Института квантовой оптики германского Общества имени Макса Планка придумала способ провести аналогичный эксперимент с вирусами. Если их идея воплотится в жизнь, можно будет получить твердые доказательства, что эти создания находятся в состоянии квантовой суперпозиции двух классических состояний -- того же движения и покоя.

Физики (пока лишь теоретически) показали, как можно удерживать микроскопические, но достаточно крупные прозрачные объекты в световых ловушках, а главное -- как связать состояние движения -- например амплитуду колебаний -- этих объектов со свойствами квантов света, фотонов. После этого достаточно запустить в ловушку фотон, находящийся в состоянии суперпозиции двух классических состояний, и можно быть уверенным: в соответствующей суперпозиции находится и наш объект. Проверить, как движется объект, можно, обратив процесс (измерять состояние фотонов, в отличие от микроскопических колебаний, физики хорошо умеют).

Прелесть в том, что на роль таких объектов вполне подходят многие вирусы. По подсчетам ученых, под эти требования подходят знакомый всем вирус гриппа и даже очень крупный вирус табачной мозаики -- первый известный науке вирус, который еще в конце XIX века открыл наш соотечественник Дмитрий Иосифович Ивановский.

С более крупными организмами трюк пока не проходит -- объекты в ловушке должны быть меньше, чем длина волны лазера, который ее запитывает (а также обладать определенными оптическими свойствами). Тем не менее, по словам авторов статьи, с которой можно ознакомиться в Архиве электронных препринтов Корнельского университета, у них уже есть соображения насчет распространения методики и на более крупные организмы. В их числе упоминаются даже небольшие беспозвоночные -- тихоходки, которые способны выжить после нескольких дней в открытом космосе.

О сознании

По мнению Ромеро-Исарты и его коллег, реальная демонстрация квантовых свойств «живых» вирусов могла бы стать серьезным прорывом для понимания квантовой механики и проверки ее копенгагенской интерпретации. Перед авторами работы замаячили фундаментальные вопросы о взаимоотношении физики и жизни и роли сознания в квантовой механике.

Впрочем, чем крохотные дрожания вирусов (а речь идет об амплитудах существенно меньших, чем размеры самих вирусов) отличаются от движения ионов, немцы и испанцы не уточняют. Не совсем понятно, и какое отношение все это имеет к жизни. Даже биологи между собой до сих пор не могут договориться, считать ли вирусы живыми организмами или нет. Какое уж тут сознание.

Медведев посоветовал ЕС перестать помогать Украине после удара "Орешником"
Реклама